Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Yiying Wu (Ed.)The surface of the layered transition metal oxide cathode plays an important role in its function and degradation. Modification of the surface structure and chemistry is often necessary to overcome the debilitating effect of the native surface. Here, we employ a chemical reduction method using CaI2 to modify the native surface of single-crystalline layered transition metal oxide cathode particles. High-resolution transmission electron microscopy shows the formation of a conformal cubic phase at the particle surface, where the outmost layer is enriched with Ca. The modified surface significantly improves the long-term capacity retention at low rates of cycling, yet the rate capability is compromised by the impeded interfacial kinetics at high voltages. The lack of oxygen vacancy generation in the chemically induced surface phase transformation likely results in a dense surface layer that accounts for the improved electrochemical stability and impeded Li-ion diffusion. This work highlights the strong dependence of the electrode’s (electro)chemical stability and intercalation kinetics on the surface structure and chemistry, which can be further tailored by the chemical reduction method.more » « less
-
The discovery of analog LixNbO2 memristors revealed a promising new memristive mechanism wherein the diffusion of Li+ rather than O2− ions enables precise control of the resistive states. However, directly correlating lithium concentration with changes to the electronic structure in active layers remains a challenge and is required to truly understand the underlying physics. Chemically delithiated single crystals of LiNbO2 present a model system for correlating lithium variation with spectroscopic signatures from operando soft x-ray spectroscopy studies of device active layers. Using electronic structure modeling of the x-ray spectroscopy of LixNbO2 single crystals, we demonstrate that the intrinsic memristive behavior in LixNbO2 active layers results from field-induced degenerate p-type doping. We show that electrical operation of LixNbO2-based memristors is viable even at marginal Li deficiency and that the analog memristive switching occurs well before the system is fully metallic. This study serves as a benchmark for material synthesis and characterization of future LixNbO2-based memristor devices and suggests that valence change switching is a scalable alternative that circumvents the electroforming typically required for filamentary-based memristors.more » « less
An official website of the United States government
